skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 28, 2026
  2. Cyber-physical systems (CPSs) rely on computing components to control physical objects, and have been widely used in real-world life-critical applications. However, a CPS has security risks by nature due to the integration of many vulnerable subsystems, which adversaries exploit to inflict serious consequences. Among various attacks, sensor attacks pose a particularly significant threat, where an attacker maliciously modifies sensor measurements to drift system behavior. There is a lot of work in sensor attack prevention and detection. Nevertheless, an essential problem is overlooked: recovery--what to do after detecting a sensor attack, which needs to safely and timely bring a CPS back. We aim to highlight the need to investigate this problem, outline its four key challenges, and provide a brief overview of initial solutions in the field. 
    more » « less
  3. In Cyber-Physical Systems (CPS), sensor data integrity is crucial since acting on malicious sensor data can cause serious consequences, given the tight coupling between cyber components and physical systems. While extensive works focus on sensor attack detection, attack diagnosis that aims to find out when the attack starts has not been well studied yet. This temporal sensor attack diagnosis problem is equally important because many recovery methods rely on the accurate determination of trustworthy historical data. To address this problem, we propose a lightweight data-driven solution to achieve real-time sensor attack diagnosis. Our novel solution consists of five modules, with the attention and diagnosis ones as the core. The attention module not only helps accurately predict future sensor measurements but also computes statistical attention scores for the diagnosis module. Based on our unique observation that the score fluctuates sharply once an attack launches, the diagnosis module determines the onset of an attack through monitoring the fluctuation. Evaluated on high-dimensional high-fidelity simulators and a testbed, our solution demonstrates robust and accurate temporal diagnosis results while incurring millisecond-level computational overhead on Raspberry Pi. 
    more » « less
  4. Real-time systems are susceptible to adversarial factors such as faults and attacks, leading to severe consequences. This paper presents an optimal checkpoint scheme to bolster fault resilience in real-time systems, addressing both logical consistency and timing correctness. First, we partition message-passing processes into a directed acyclic graph (DAG) based on their dependencies, ensuring checkpoint logical consistency. Then, we identify the DAG’s critical path, representing the longest sequential path, and analyze the optimal checkpoint strategy along this path to minimize overall execution time, including checkpointing overhead. Upon fault detection, the system rolls back to the nearest valid checkpoints for recovery. Our algorithm derives the optimal checkpoint count and intervals, and we evaluate its performance through extensive simulations and a case study. Results show a 99.97% and 67.86% reduction in execution time compared to checkpoint-free systems in simulations and the case study, respectively. Moreover, our proposed strategy outperforms prior work and baseline methods, increasing deadline achievement rates by 31.41% and 2.92% for small-scale tasks and 78.53% and 4.15% for large-scale tasks. 
    more » « less